

TUM Data Innovation Lab

Project: "Deep Learning on High-Res Multispectral Aerial Imagery"

Authors: Felix Buchert, Sarah Dörr, Filippo Galassi, Max Helleis, Kamilia Mullakaeva

Mentors: M.Sc. David Dohmen, M.Sc. Felix Horvat (Ocell GmbH) M.Sc. Oleh Melnyk (Department of Mathematics)

Project Lead: Dr. Ricardo Acevedo Cabra (Department of Mathematics)

Supervisor: Prof. Dr. Massimo Fornasier (Department of Mathematics)

1	Introduction
2	Setup
3	Approach 1
4	Approach 2
5	Approach 3
6	Further Results
7	Conclusion



1.1 Introduction – Motivation

• Why tree classification?

- Determination of the overall forest stock volume
- Identification of tree species
- Distribution of tree species
- Assessment of tree / forest health

• Why aerial imagery?

- Costwise and timewise benefit
- Very high resolution data

• Why multispectral imagery?

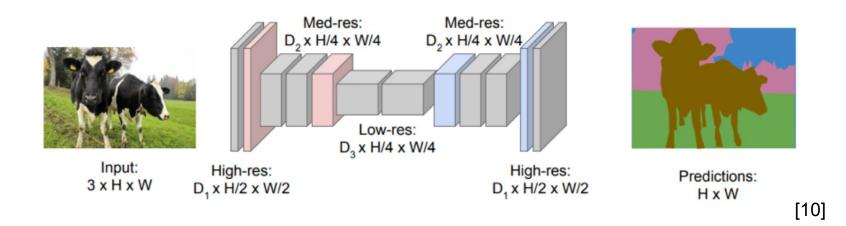
- Most widely used
- High reflectance of vegetation in near-infrared domain

• Main goal

 Improving OCELL's approach for tree detection and species classification

• Current approach:

- Semantic Segmentation: Generate output segmentation masks using a Fully Convolutional Neural Network (FCNN) from input images
- Tree localization and classification: Extract center points from output segmentation maps



• Potential points of improvement

Approach 1: Evaluation and comparison of other suitable architectures

• Approach 2:

Performance analysis under different definitions of ground truth segmentation mask

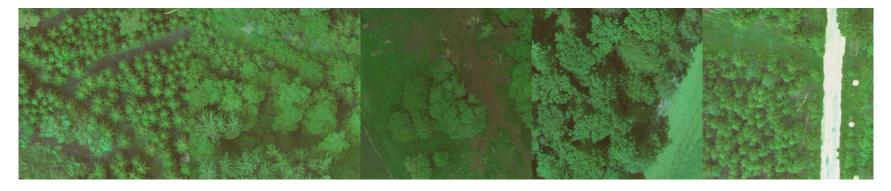
• Approach 3:

Integration of height information and Near-Infrared band

1	Introduction
2	Setup
3	Approach 1
4	Approach 2
5	Approach 3
6	Further Results
7	Conclusion

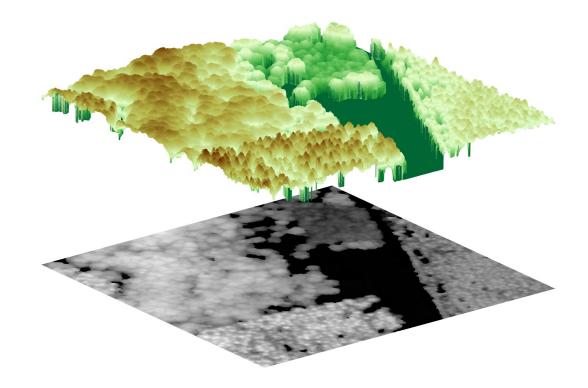
Data Set A

Data Set B



2.1 Setup – Data Sets (2)

- Acquired with a sensor developed by the company
- Orthorectified images were provided
- Implementation of DSM model
- Implementation of NIR band in data set A



ТШТ

- Image tiling
 - Generation of equally sized tiles
 - Tile size: 512 x 512 pixel
- Data augmentation
 - Weak and strong augmentation
 - Augmentation optimized for multispectral images
 - $\blacksquare \quad Split \rightarrow Augment \rightarrow Recombine \rightarrow Augment$
- Data split
 - Training: 70%
 - Validation: 20%
 - Testing: 10%

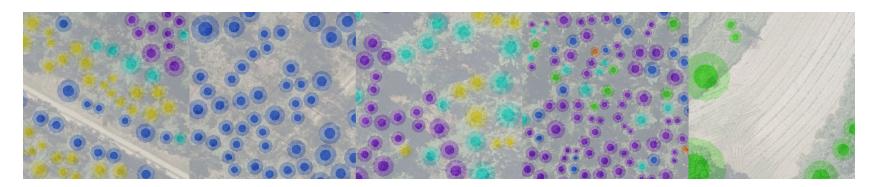
without augmentation

weak augmentation

strong augmentation

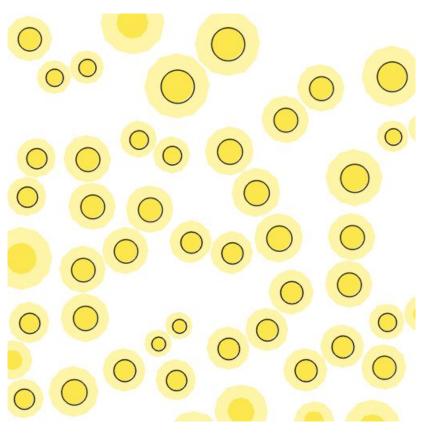
Speaker: Filippo Galassi

- Each training process has this setup
 - Choice of best model
 - **Optimizer:** Adam [1]
 - Loss function: Lovász-Softmax loss [2]
- Runs as a sequence of different setups (Architectures, label definitions)



Provided label definition

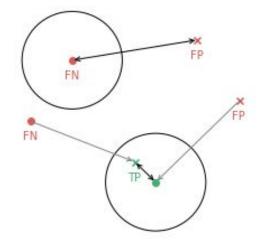
- **Metric Choice:** Pixel-wise metrics are not informative in context of tree detection
- **Point Extraction:** Tree centers and species have to be extracted from output segmentation mask
- **Blob detection:** Extract keypoints (i.e. tree centers) by detecting areas of uniform color
- Implementation: OpenCV blob detection algorithm used (based on Border-Following algorithm [3])



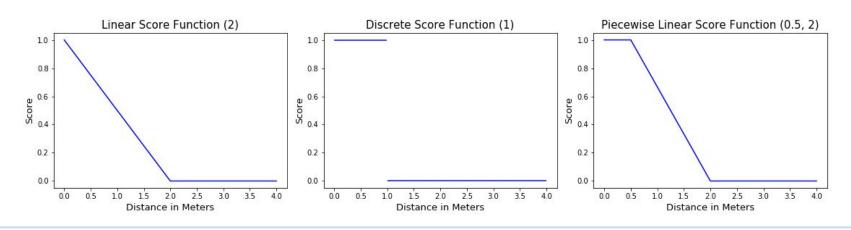
Blob Detection: Detected center points from ground truth segmentation masks

• Nearest-Neighbor matching:

- Find nearest neighbors for all predictions and labels
- Only Match if pairwise nearest neighbor
- Score Definition
 - Center Scores: Measures distance of centers
 - Sample-Weighted Class Score: Average score of all class scores w.r.t. correct center predictions (weighted by the number of samples)



Nearest-Neighbor Matching



Speaker: Sarah Dörr

1	Introduction
2	Setup
3	Approach 1
4	Approach 2
5	Approach 3
6	Further Results
7	Conclusion

• Current state:

• AlbuNet architecture [4] with pre-trained ResNet-50 as encoder

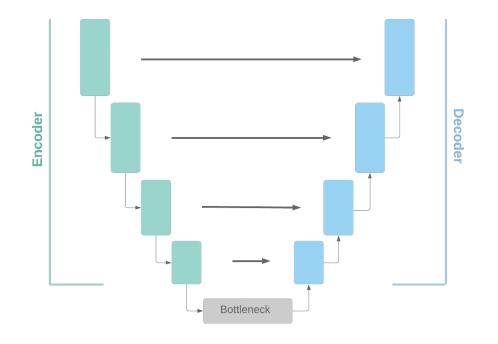
• Issues:

- No evaluation and comparison to other suitable neural network architectures
 - \Rightarrow Hard to measure how well the current architecture performs
- Large architecture with a lot of parameters to train
 ⇒ Long training, inference time, requires more GPU memory

• Goal:

- Conduct a comparative analysis of the performance of AlbuNet
- Evaluate and compare a selection of related architectures

- **Downsampling path:** Capturing the context of the image and extracting feature maps
- **Up-sampling path:** Transforming features back to an output map (same size as the input image)
- Skip connections: Reusing feature maps of downsampling path
 ⇒ Helps to recover spatially detailed information

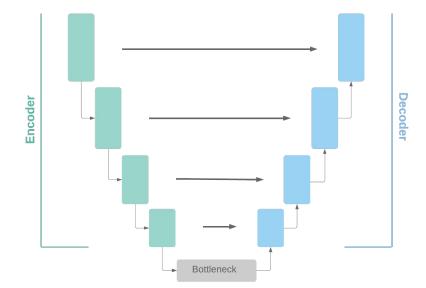


U-Net [5] (not pre-trained):

- Encoder block: Convolution, ReLU, MaxPool layers
- Decoder block: Convolution, ReLU, Interpolation layers
- Bottleneck: Convolution, Interpolation layers

TernausNet [6]:

- Encoder: VGG-11, VGG-16
- Pre-trained encoder on ImageNet
 [9]



AlbuNet [4]:

- Encoder: ResNet-50, ResNet-34, ResNet-18
- ResNet uses Residual Blocks (skip connection in each block)
- Pre-trained encoder on ImageNet
 [9]

Tiramisu [7] (not pre-trained):

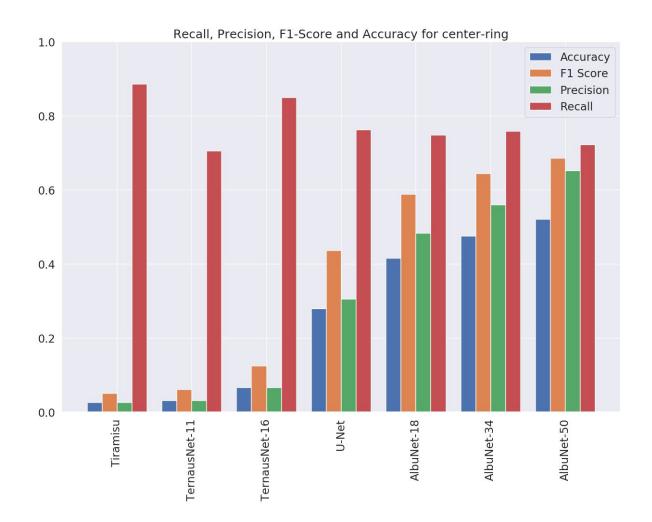
- Encoder is DenseNet-based
- DenseBlocks: Each layer obtains additionally inputs from all preceding layers
- Transition Blocks: Used for downsampling and upsampling

Bottleneck

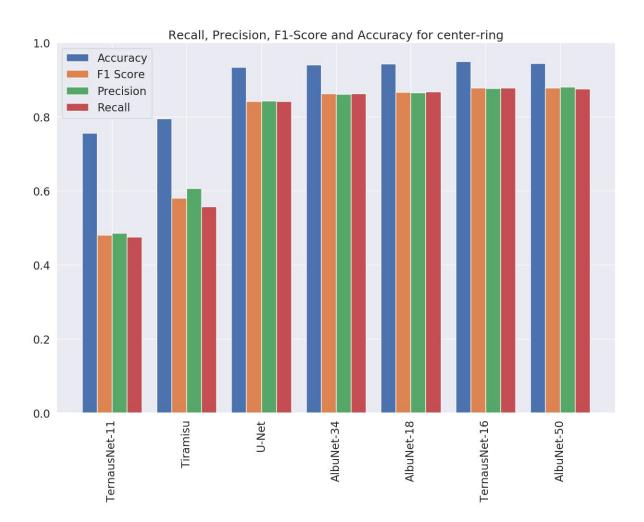
Encoder

Decode

Center Prediction Scores



Sample-Weighted Class Scores



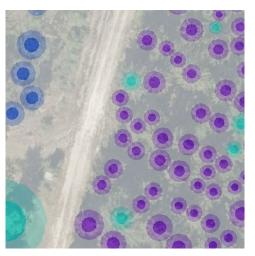
Speaker: Kamilia Mullakaeva

- The AlbuNet-50 architecture performs well on all three evaluation methods
- Using AlbuNet-34 or AlbuNet-18 increases efficiency (training time, GPU memory, inference time)
- Further improvements might be:
 - Changing the skip connections between the encoder and the decoder
 - Exploring another architectures like Attention U-Net

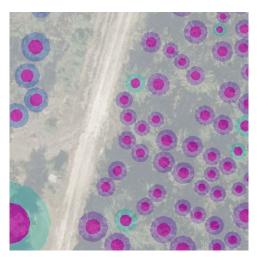
1	Introduction
2	Setup
3	Approach 1
4	Approach 2
5	Approach 3
6	Further Results
7	Conclusion

- Problem:
 - Quality of center predictions: Strongly varying performance of architectures on center prediction
 BUT: Center point extraction decisive factor for overall performance
- Goals:
 - **Label definitions:** Explore different possibilities to define ground truth segmentations masks for tree localization / species classification
 - Evaluation: Comparison of models trained on different label definitions

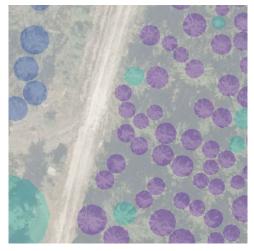
4.2 Approach 2 – Label Definitions



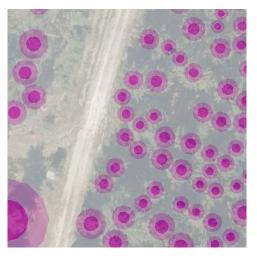
Center-Ring



Generic-Center



Ring-only / Two model (class)

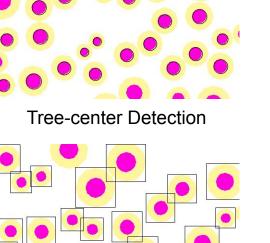


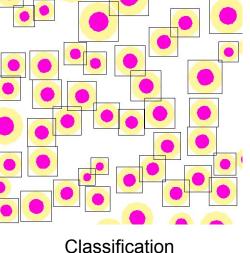
Two model (center)

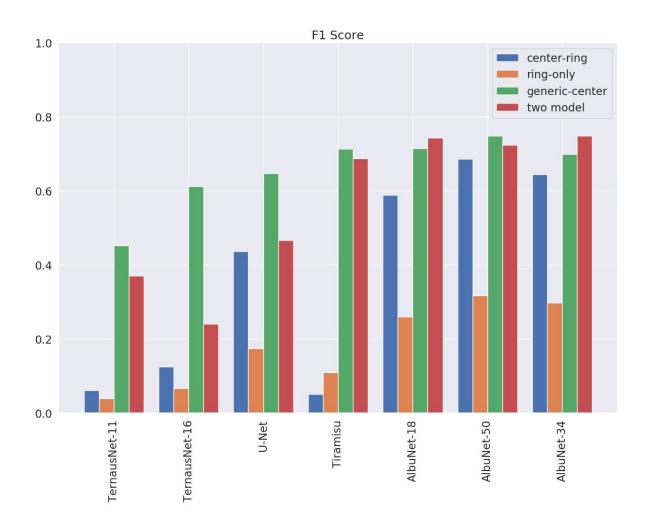
Speaker: Felix Buchert

Majority-Vote Algorithm for Species Classification:

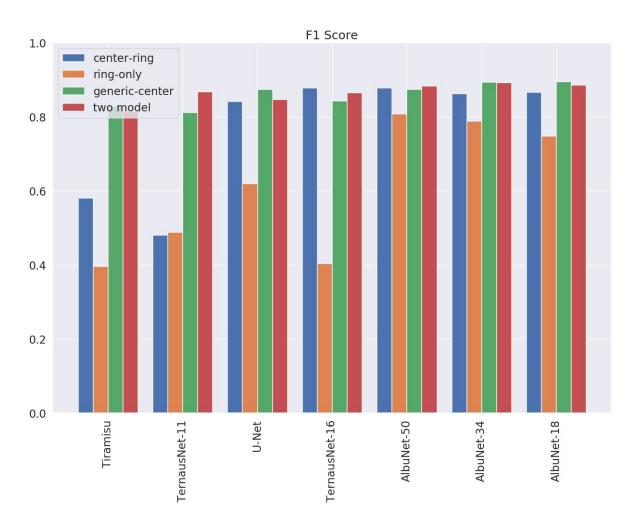
- **Tree-center Detection:** Extract tree center points with Blob Detection
- Enclosing Square: With the extracted tree center point and the approximated radius a enclosing square is derived
- **Majority-Vote:** Within the enclosing square a majority-vote over all pixels is conducted to derive the species







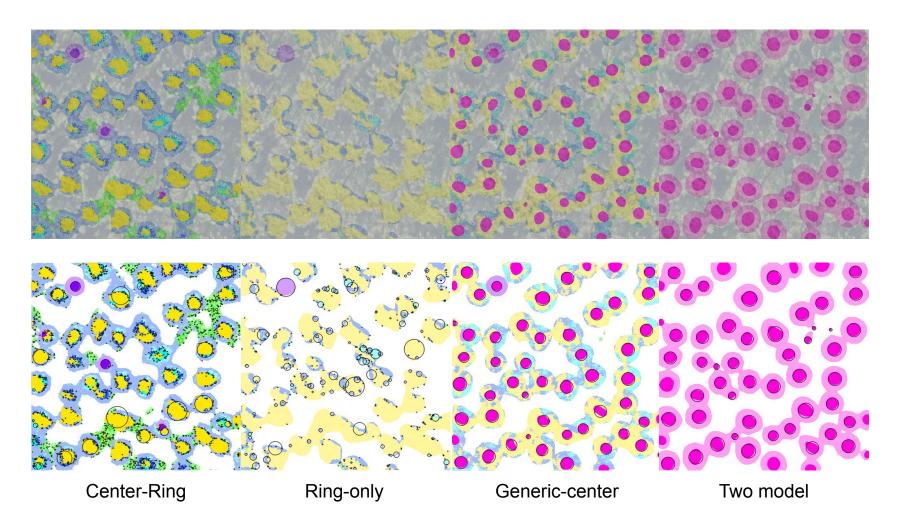
Speaker: Felix Buchert



Sample-Weighted Class Scores

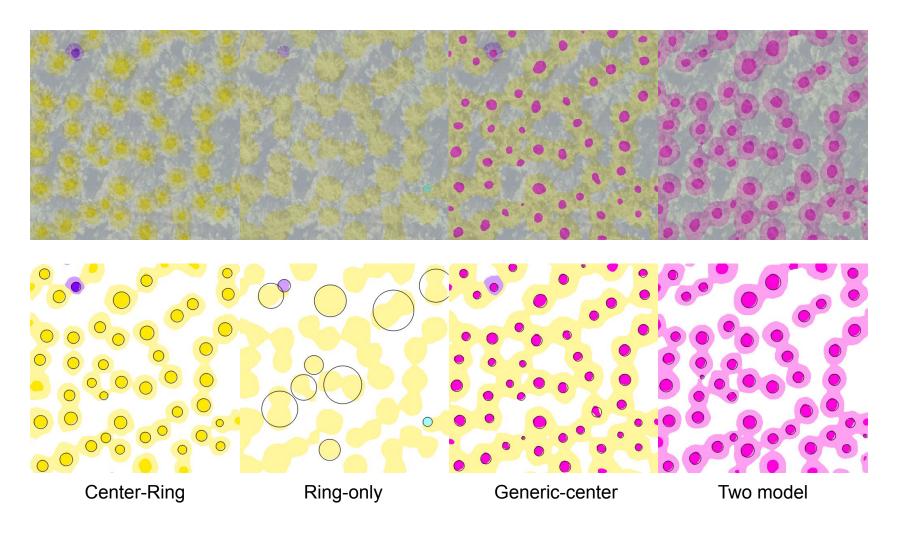
ТШ

Tiramisu: Tree center extraction



ТЛП

AlbuNet: Tree center extraction



- **Center / Class Prediction:** Models perform worse on center prediction than on classification
 - **Center point extraction:** Blob detection works reliably for generic-center and two model approach

⇒ improves overall performance significantly

- **Classification:** No significant improvement in species classification
- Label Definition: Generic-Center and Two Model approaches yield an improvement of 7-14% for AlbuNet-50.
 - Generic-center:
 - + Training of only one model
 - Less flexibility due to fixed species classes
 - Two model:
 - + One generic center model trained on all data
 ⇒ More robust, can be used with different classification models
 - Training of two models

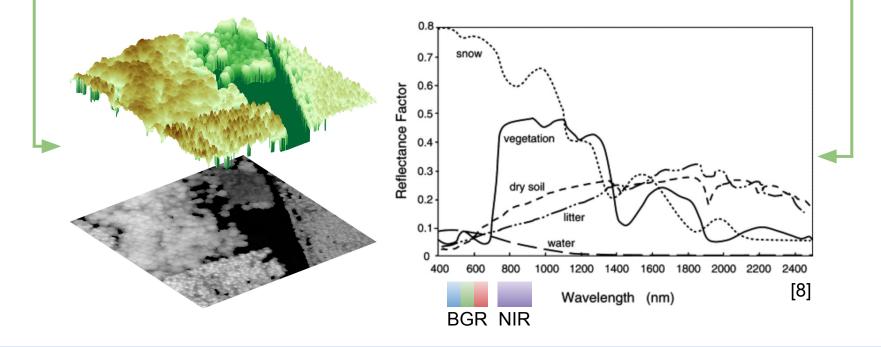
1	Introduction
2	Setup
3	Approach 1
4	Approach 2
5	Approach 3
6	Further Results
7	Conclusion

 Goal: Incorporation of additional information: Near-infrared (NIR) reflectance and Digital Surface Model (DSM)

• Assumptions:

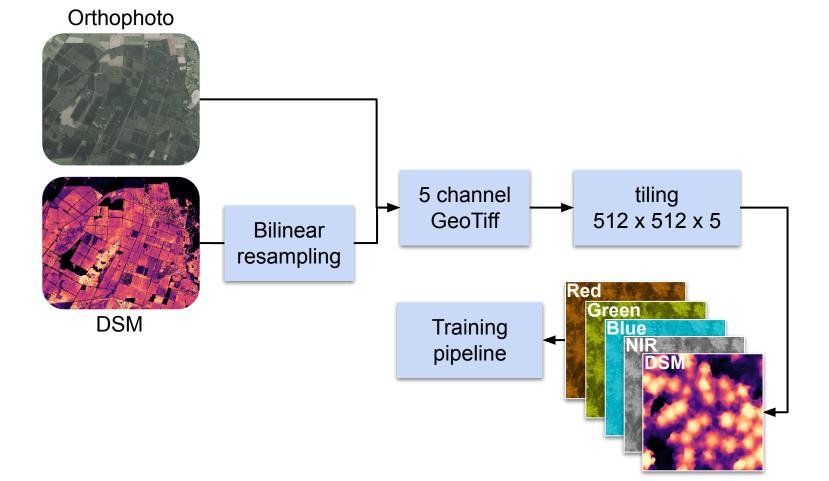
- NIR reflectance provides additional sample from spectral signature

 and helps with the classification of tree species
- DSM contains geometric information that helps with the tree center localization and species classification



5.2 Approach 3 – Data fusion

- Fusion of orthophoto and Digital Surface Model
- Adaptation of processing pipeline to work with fused data

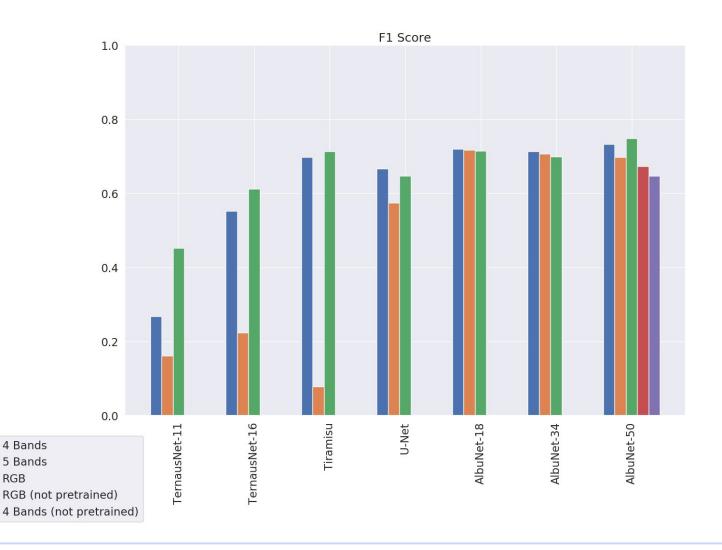


• All model architectures from the previous approaches were trained

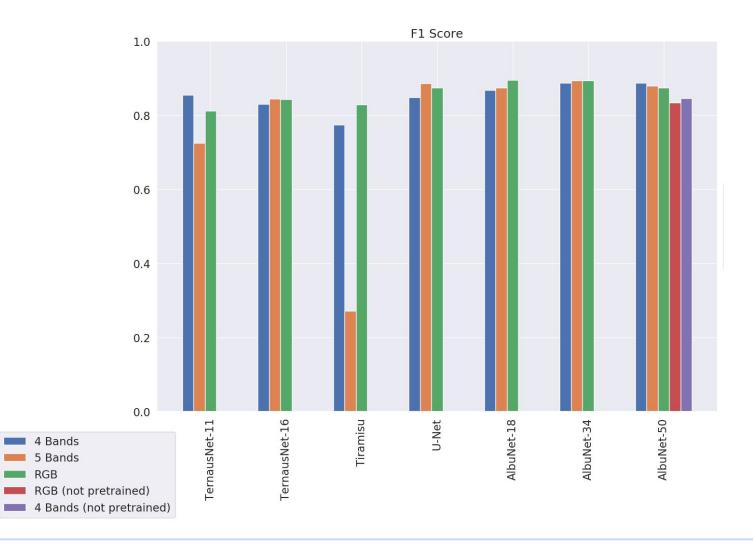
Run	Channels	Models	Epochs	Pre-trained
1	RGB + NIR	all	500	True
2	RGB + NIR + DSM	all	500	True
3a	RGB	AlbuNet-50	2000	False
3b	RGB + NIR	AlbuNet-50	2000	False

- Transfer learning: To assess influence of transfer learning one model was trained from scratch (AlbuNet-50) on two configurations:
 - RGB
 - RGB + NIR

Center Prediction Scores



Speaker: Max Helleis



Speaker: Max Helleis

Center prediction

- Center prediction seems not to profit from additional information
- No significant difference for AlbuNet family
 - Still performs best
- DSM decreases performance for other architectures
- NIR has a smaller impact on scores than DSM

Class prediction

- No significant change for AlbuNet family
- Impact of NIR and DSM channel weaker than for center prediction
- Could be valuable for different set of tree species

• Transfer learning

- Transferability of knowledge obtained from ImageNet can be seen
- Class prediction: Almost caught up with pre-trained models
- Training from scratch should be considered for future tests
 - Might improve performance with different set of tree species

1	Introduction
2	Setup
3	Approach 1
4	Approach 2
5	Approach 3
6	Further Results
7	Conclusion

Evaluation based on tree species:

- Confusion between conifers
- Leaved Tree performs the worst
 - **Not** important for foresters
 - Only few samples
 - Tree centers hard to predict
- Spruce and Pine perform the best
 - Most important tree species for foresters
 - Lots of samples

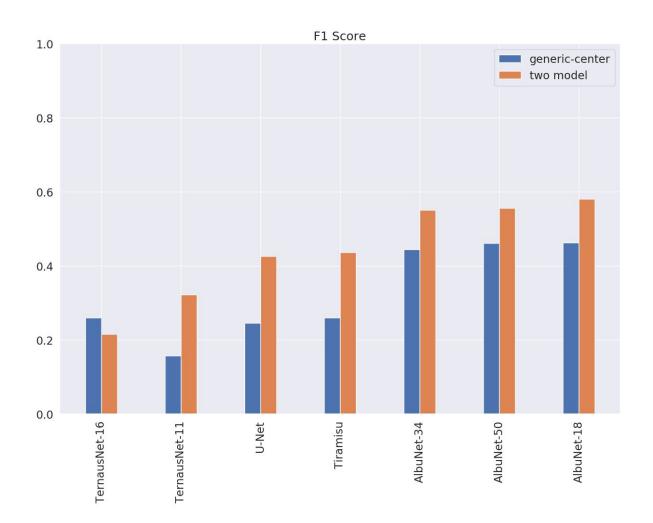
Douglas fir						-0.8
Larch						-0.6
Leaved Tree						
Pine						-0.4
Spruce						-0.2
	Douglas fir -	Larch -	Leaved Tree -	Pine -	Spruce -	-0.0

-1.0

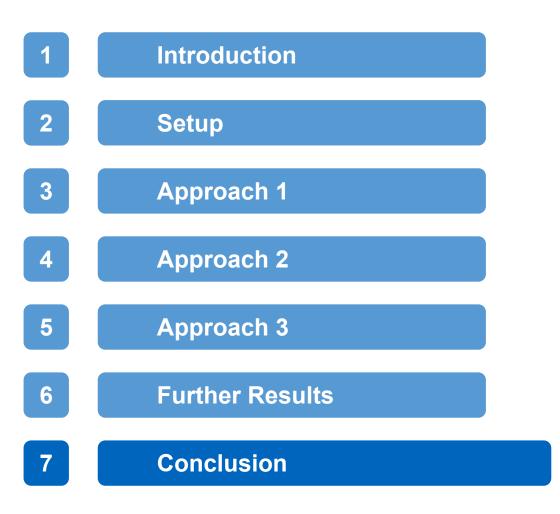
Dead Tree	Douglas fir	Larch	Leaved Tree	Pine	Spruce
0	82	224	33	146	158

Speaker: Sarah Dörr

Center Prediction Scores



Speaker: Sarah Dörr



7 Conclusion

ТЛП

- Best performing model: AlbuNet-based architectures
 - No significant difference between AlbuNet-50 and AlbuNet-34
 - AlbuNet-34 has less trainable parameters
 ⇒ Decreases training and inference time, but also GPU resources
- Best label definition: Generic-Center and Two Model
 - Generic-Center only needs training of one model
 - Two Model generalizes better on unseen data

• Use of multispectral data:

- No significant difference in performance for best models
- Still worth to test if set of tree species changes
- May be helpful for detecting unhealthy trees

[1] Kingma DP and Ba J. Adam: A method for stochastic optimization. arXiv, abs/1412.6980, 2014.

[2] Berman M and Blaschko MB. Optimization of the jaccard index for image segmentation with the lovász hinge. Computing Research Repository, abs/1705.08790, 2017.

[3] Keiichi AB Suzuki S. Topological structural analysis of digitized binary images by border following. Computer vision, graphics, and image processing, 30(1):32–46, 1985.

[4] A. Shvets, V. Iglovikov, A. Rakhlinand, and A. Kalinin. Angiodysplasia detection and localization using deep convolutional neural networks. 17th IEEE International Conference on Machine Learning and Applications, pages 612–617, 04 2018.

[5] Ronneberger O, Fischer P, and Brox T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention, pages 234 – 241. Springer International Publishing, 2015.

[6] Iglovikov V and Shvets A. Ternausnet: U-net with VGG11 encoder pre-trained on imagenet for image segmentation. Computing Research Repository, abs/1801.05746, 2018.

[7] Jégou S, Drozdzal M, Vázquez D, Romero A, and Bengio Y. The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation. Computing Research Repository, 2016.

[8] Knipling EB (1970): Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation, Remote Sensing of Environment, 1(3): 155-159

[9] Deng J, Dong Wand Socher R, Li LJ, Li K, and Fei-Fei L. (2009): ImageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 248–255

[10] Image: FCNN. Online available:

https://www.jeremyjordan.me/semantic-segmentation/#advanced_unet [last access: 17.02.2020]

Thank you for your attention!

• Labeling techniques

- Two model approach: Update *ring-only* labels to area segmentation
- Training different models for different selection of models (i.e. use generic class for all other species)

Task specific model development

- Two model approach: combine different architectures
- Feed classification model with center prediction confidence mask

Multispectral information

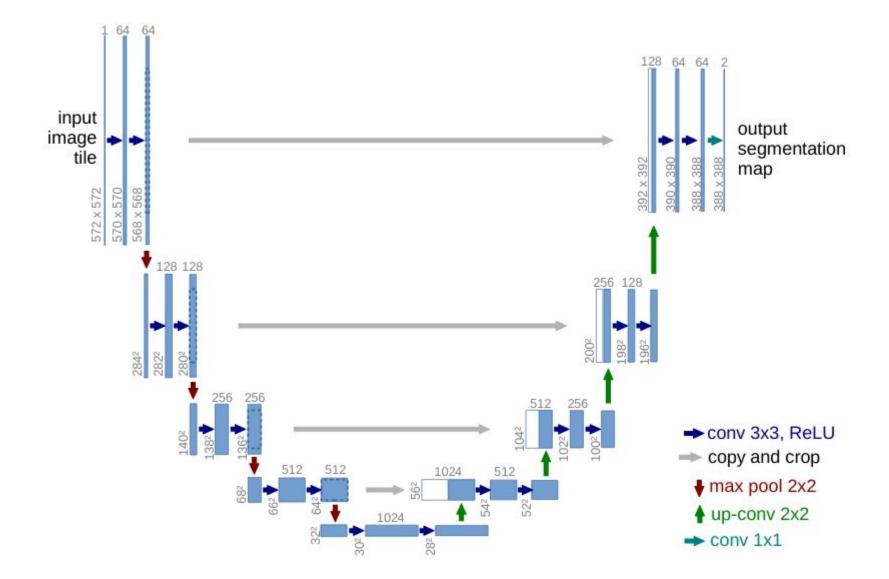
- Evaluate performance on bigger data set
- Use NIR channel to predict diseases or water-stress

• Blob detection and species classification

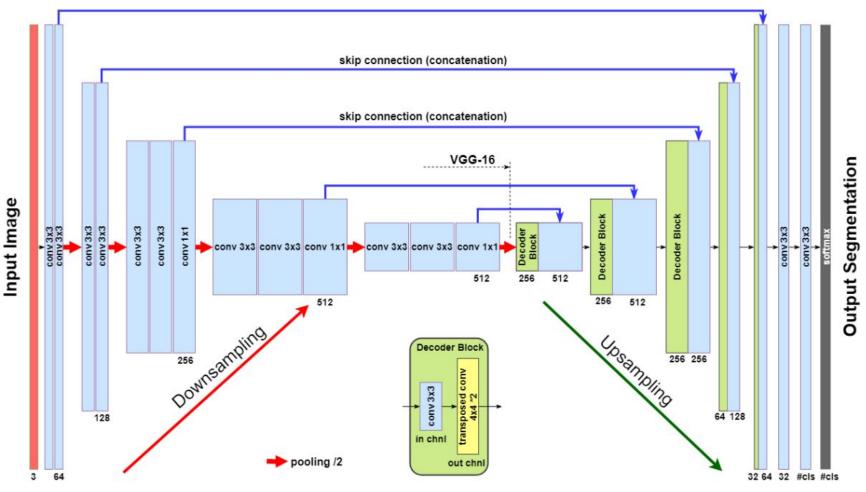
- Improve performance on image borders
- Conditional Random Fields for post-processing
- Majority-Vote: weight input of pixel by distance to center

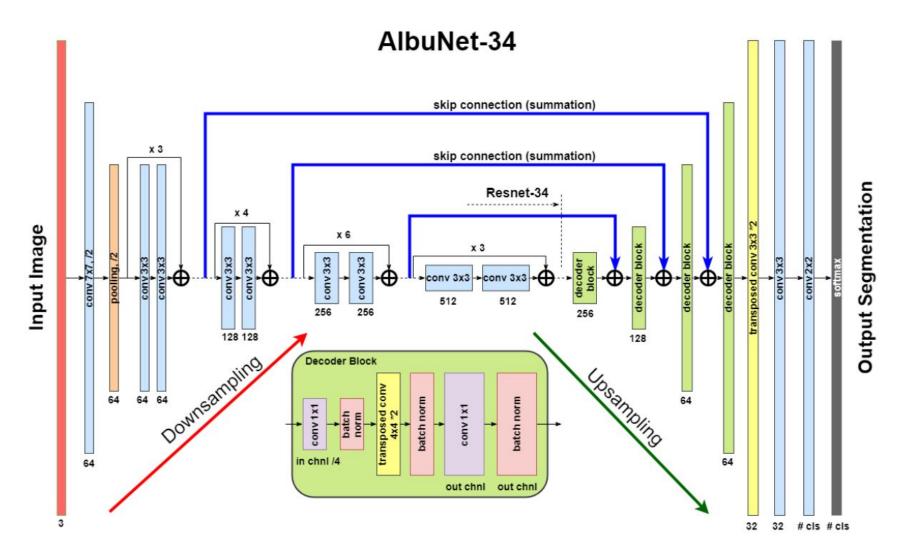
• Improving architectures

- New architectures: Attention U-Net, QuickNat
- Regularization during training: Dropout, Weight Regularization



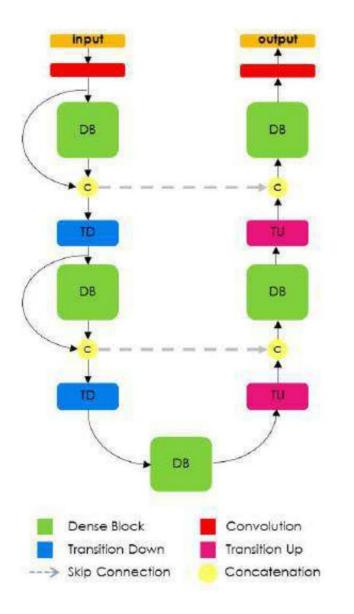
TernausNet-16

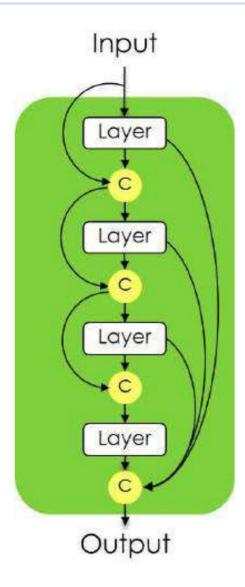




DL on High-Res Multispectral Aerial Imagery 49

Backup – Architectures (4)





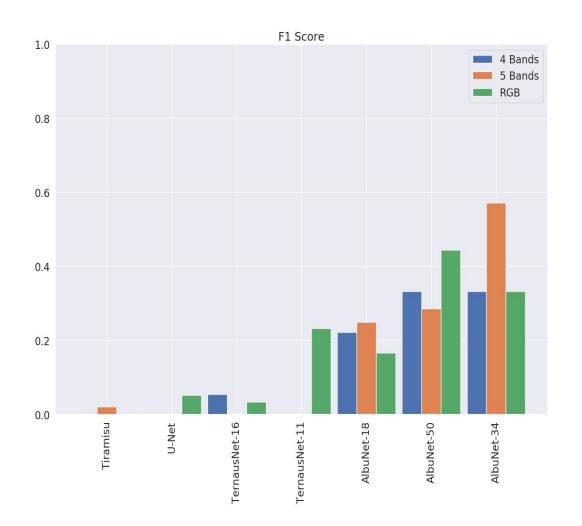
Layer
Batch Normalization
ReLU
3×3 Convolution
Dropout $p = 0.2$

Transiti	ion Down (TD)
Batch	Normalization
	ReLU
1×1	Convolution
Drop	bout $p = 0.2$
2×2	Max Pooling

Transition Up (TU)			
$3 \times$	3 Transposed Convolution		

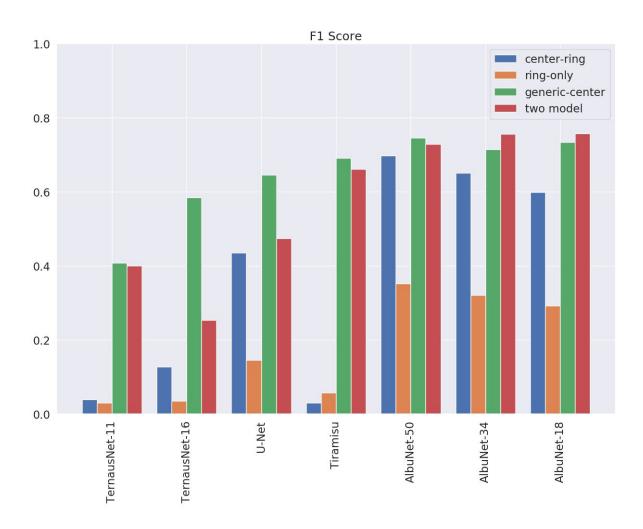
stride = 2

Dead Tree Classification

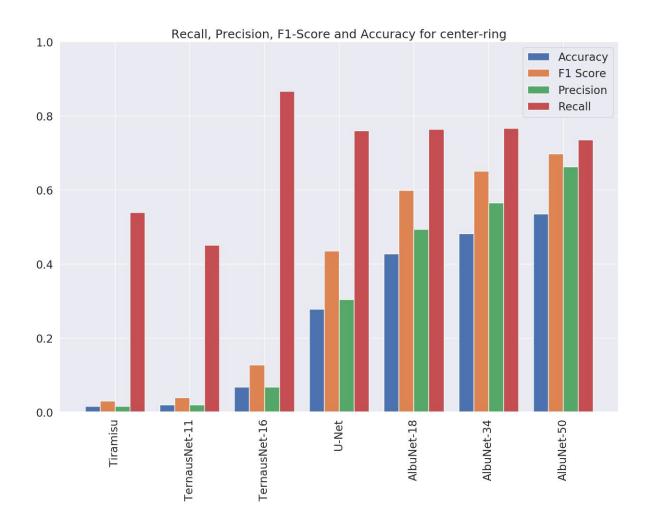


$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$
$$Recall = \frac{TP}{TP + FN}$$
$$Precision = \frac{TP}{TP + FP}$$
$$F1 = 2 \cdot \frac{Recall \cdot Precision}{Recall + Precision}$$

Aggregate Class-Center Scores



Aggregate Class-Center Scores



AlbuNet: Majority-Vote

Tiramisu: Majority-Vote

