celonis TM

A Company's Digital Twin

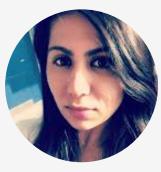
TUM Data Innovation Lab

Team:

Sagarika Kathuria, Pooreumoe Kim, Frederik Wenkel, Jieyi Zhang

Mentors:

Simon Brand, Anton Kurz, Sebastian Rossner


Co-Mentor:

Laure Vuaille

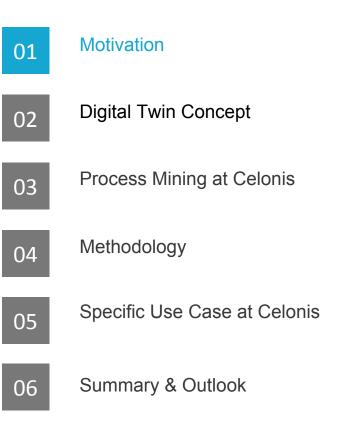
Project Leader: Dr. Ricardo Acevedo Cabra Supervisor: Prof. Dr. Massimo Fornasier

Our Team

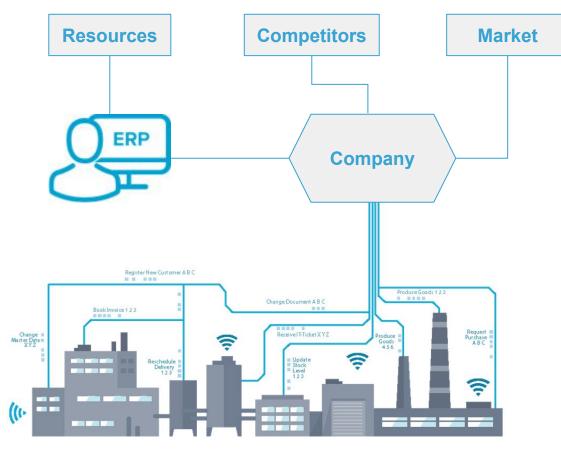
Sagarika Kathuria Mathematics in Data Science

Pooreumoe Kim Data Engineering and Analytics

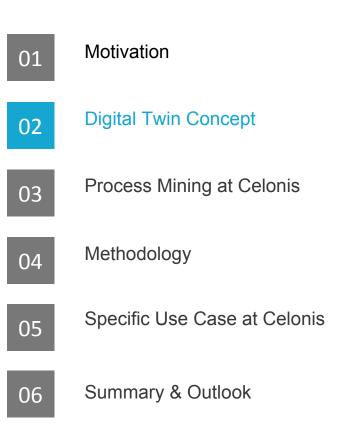
Frederik Wenkel Mathematics



Jieyi Zhang Data Engineering and Analytics



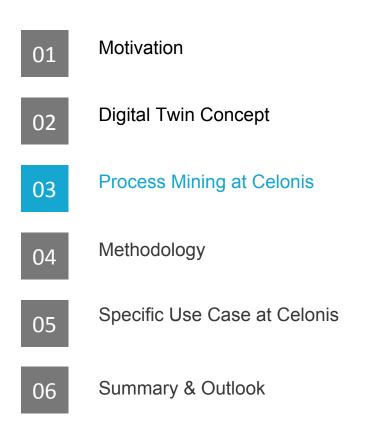
01	Motivation
02	Digital Twin Concept
03	Process Mining at Celonis
04	Methodology
05	Specific Use Case at Celonis
06	Summary & Outlook



Company as a Complex System

- → Company's future performance?
- → Forecasting systems
- → Sales forecasting, predictions for volatile resources
- → "Patchwork" of forecasts
- → No complete picture

Digital Twin Concept


Digital Twin Concept

Major characteristics

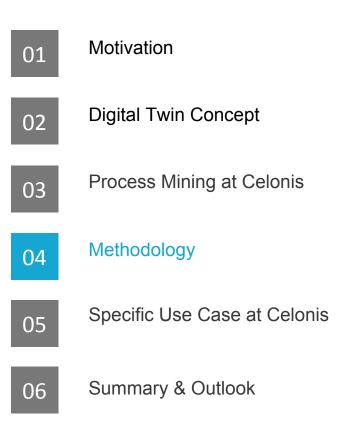
- → Similar behavior to original organization
- → Family resemblance
- → No exact copy
- → Digital Twin can be raised differently

Process Mining at Celonis

- → Every process leaves a digital footprint in the company's environment
- → Celonis Process Mining enables an organization to structure its raw data of a process into a **data model**
- → The main object : Activity Table
 - → Consists of a number of activities represented by cases
 - → Each case has its own case key to distinguish different cases
 - → Each Activity has an event time, a sorting and a category

CACE KEV		EVENTTIME		SORTING
_CASE_KEY	ACTIVITY_EN	EVENTITIVIE	CATEGORY_NAME	_SORTING
201807010	Status: New	2018.7.2 3:08	Category 1	10
201807010	Status: Open	2018.7.2 3:14	Category 1	10
201807010	Change assignee	2018.7.2 3:14	Category 1	10
201807010	Status: On Hold	2018.7.2 3:49	Category 1	10
201807010	Status: Open	2018.7.2 6:00	Category 1	10
201807010	Status: Closed	2018.7.2 12:06	Category 1	10
201807011	Create Ticket	2018.7.1 18:21	Category 2	10
201807011	Change priority	2018.7.1 18:21	Category 2	10
201807011	Status: Closed	2018.7.1 21:39	Category 2	10

ACTIVITY TABLE


Process Mining at Celonis

- → Analysis in Celonis Data Mining:
 - → Helps visualize and understand the data using tools like Process Query Language(PQL) and Key Performance Indicators (KPI's)
 - Helps identify bottlenecks and inefficiencies within the process
 - → Consists of various objects like: Process Explorers, Variants Explorer, Standard KPI's
 - → Customizable with tables, charts, diagrams and custom KPI's

ANALYSIS

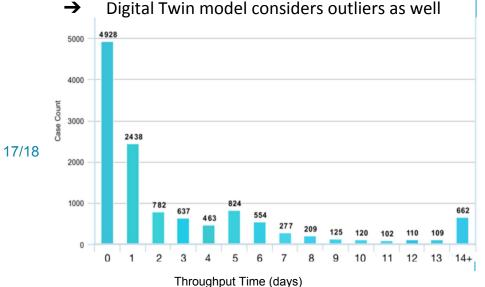
Explorative Data Analysis

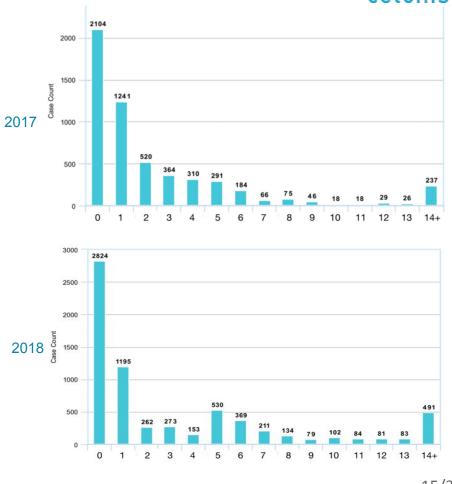
- → Input Dataset : Celonis Happyfox IT Service Management
- → Happyfox a Saas Platform, offers help desk ticketing system for approx. 12000 companies.
- → Celonis Happyfox ITSM Data Model:
 - Three data tables which contains the information for each ticket -__CEL_ITSM_happyfox_ACTIVITIES, Tickets, Updates
 - → Data stored in the form of string, boolean, number and date time values
- → Data accessed using PQL (Process Query Language) in Celonis and Python API.

_CEL_ITSM_HAPPYFO; A	• ·	TICKETS	\$ ×	UPDATES	¢۰
Search column	Q	Search column	Q	Search column	Q
🤦 _CASE_KEY	×		ж	4 tickets_id	×
① _CASE_KEY	a _e	🔍 theID	×	(D) timestamp	94
S ACTIVITY_EN	a _e	① theID	a,	() update_id	a,
© EVENTTIME	a,	(\$) subject	a _e	(\$) satisfaction_survey	94
	a,	S first_message	0.	① tickets_id	a,
(\$) category_name	a _e	① attachments_count	a,	S priority_change_new	a _e
1101		D last_updated_at	a _e	S priority_change_new_name	a,
		D last_staff_reply_at	a _e	S priority_change_old	a,
		() sla_breaches	a _e	S priority_change_old_name	a _e
		S merged_tickets	a _e	(\$) category_change_new	a.,
				100	

Explorative Data Analysis

- → ITSM Ticket Processing
 - → Each ticket has its own process each process type called a Variant
 - → Happy Path variant that happens most frequently
 - → Throughput time -


$$T_{tp} = ts_{act} - ts_{act_previous}$$

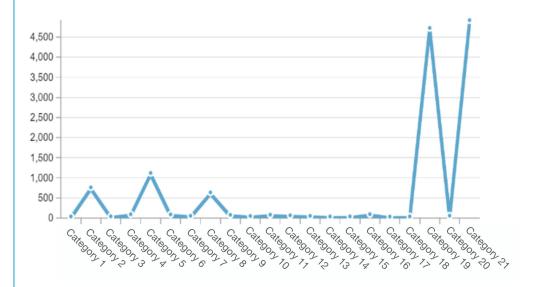

- $T_{total_{tp}} = ts_{last_{act}} ts_{first_{act}}$
- → Total Variants : 1850 , 20% cases follow Happy Path

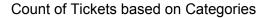
Explorative Data Analysis

- → Throughput Time Analysis
 - → 2 cases tickets created in 2017 & 2018
 - → Median close to 0 days Max Throughput Time - 276 days

Explorative Data Analysis

Throughput Time Analysis

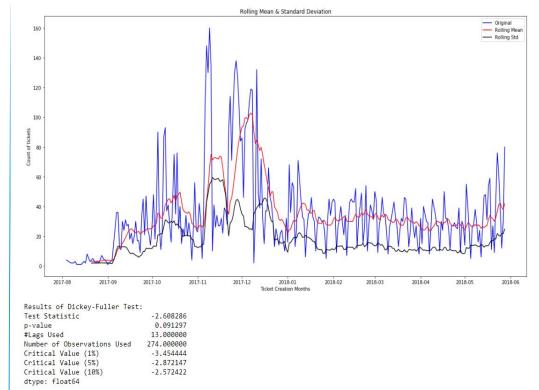

- → Kolmogorov–Smirnov(KS) Test
 - Tests the distance between the empirical distribution function of the data and the cumulative distribution function (CDF) of the reference distribution.
 - → H₀ = Two distributions follow the same distribution
 - → H_0 holds if p-value > 0.05
- → Need non-parametric methods to simulate the Data such as Bins Method, Kernel Density Estimation


Distribution	p-value	Is passed
Poisson Distribution	4.675e-10	No
Exponential Distribution	0.0	No
Birnbaum-Sa unders	0.0	No

KS Test Results

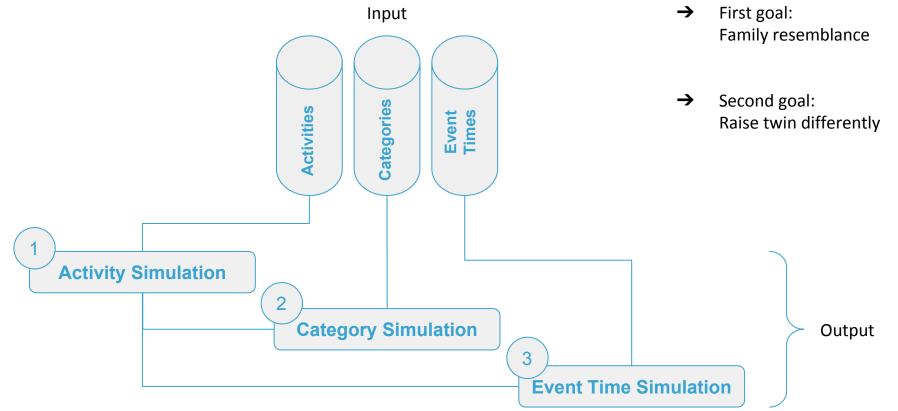
Explorative Data Analysis

- → Category Based Analysis
 - → Total Categories 21
 - → Categories of Importance 5
 - → Digital Twin simulates categories in cases based on their percentages



Explorative Data Analysis

- → Ticket Number Analysis
 - → Total Tickets 12000
 - Dickey Fuller Test Statistical test for checking stationarity.


 H₀ - Series is non-stationary p-value : 0.091
Cannot reject H₀as p-value > 0.05

- → Use Transformations like log
- → Estimate trend and seasonality to predict number of tickets using Time Series Methods

Count of Tickets Based on Creation Date

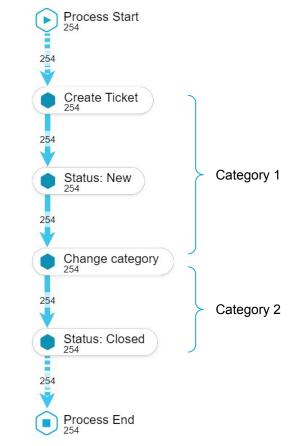
General Simulation Approach

Activity Simulation

- → First building block of simulation
- → Importance for subsequent blocks
- → Measure of precision: Occurrences of most frequent activity flows from input data in output
- → According to empirical observations from input
- → Markov Process
- → Manageable matrix representation
- → No dependencies captured on activity history

Activity Simulation

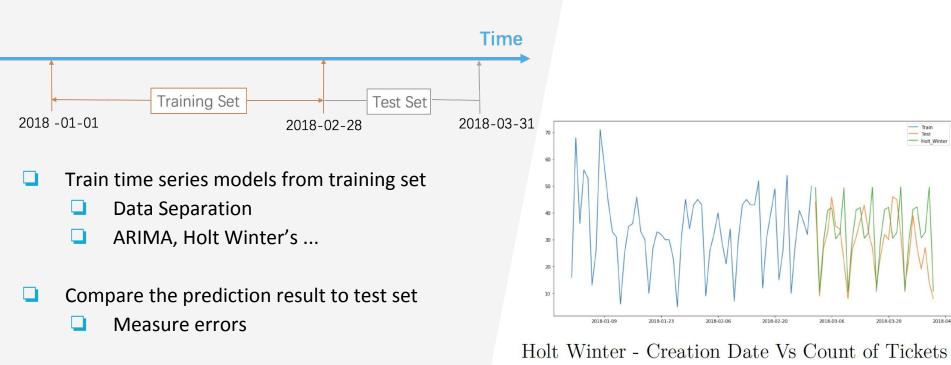
- → Preprocessing yields improvement
- → Treat activity flows with different starting activities separately
- → Linear Additive Markov Process (LAMP) instead of ordinary Markov Process


$$P(x_{n+1}|x_0,\ldots,x_n) = \sum_{i=1}^{M} w_i \cdot P\left(x_{\max\{n-i+1,0\}},x_{n+1}\right)$$

→ Parameters w, P have to be learned minimizing the following negative log likelihood

$$L(w, P, c_1, \dots, c_B) = -\sum_{k=1}^{B} \left[\sum_{l=1}^{L_k} \log \left(\sum_{i=1}^{M} w_i \cdot P\left(x_{\max\{l-i,0\}}^k, x_l^k \right) \right) \right]$$

Category Simulation


- → Category assignment to every activity flow from activity simulation
- → Starting category assignment
- → Markov Process for category changes

- Train

- Test - Holt_Winter

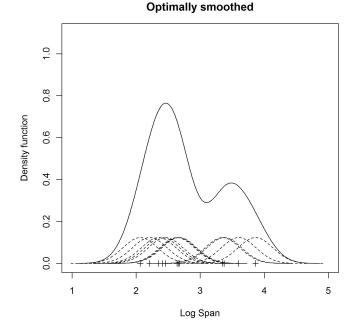
The number of Tickets Prediction

2018-04-03

The number of Tickets Prediction

Model	RMSE Value
Naive Approach	34.51
Simple Average	19.18
Moving Average	20.02
Simple Exponential Smoothing	31.08
Double Exponential Smoothing	20.59
Holt Winter's / Triple Exponential Smoothing	12.15
ARIMA	22.56

→ Choose Holt Winter's Model

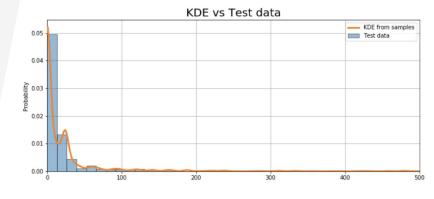

Throughput Time Simulation: KDE

Kernel Density Estimation(KDE): Non-parametric way to estimate the probability density function(PDF) of a random variable.

$$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - X_i}{h}\right)$$

h : Bandwidth K(.) : Kernel function

Two important parameters

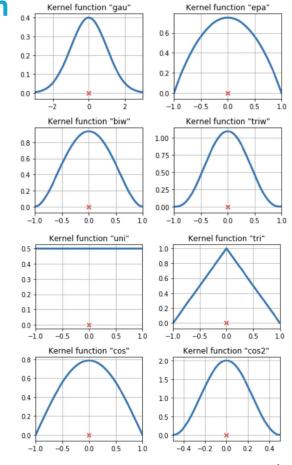


Throughput Time Simulation: KS-Test

Kolmogorow-Smirnow-Test (KS-Test)

- $H_0: F_X(x) = F_Y(x)$ $H_1: F_X(x) \neq F_Y(x)$
- **p-value > 0.05**:

Two sets have same distribution The higher, the more identical



Throughput time From <Status: New> to <Change assignee>

Throughput Time Simulation: Kernel Selection

- Simulating power(KS-Test)?
 - Identical
 - Table 7 (Doc)
- Negative value generation?
 - Except Gaussian, no negative if bandwidth <= 0.1</p>
 - Table 8 (Doc)
- Internal sampling method?
 - Gaussian & Uniform

Choose Uniform Kernel

Throughput Time Simulation: Bandwidth Selection

Three methods for bandwidth:

- Constant bandwidth (0.1)
- Gridsearch
- Gridsearch with Cross validation
- Analysis of variance(ANOVA)

*H*₀: $\mu_1 = \mu_2 = \mu_3$

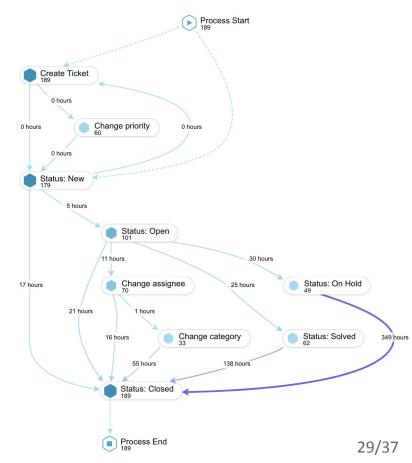
 $H_1: \boldsymbol{\mu}_i \neq \boldsymbol{\mu}_j$

F-value	p-value
0.839	0.362

ANOVA result: cannot reject Ho

Bandwidth	Running $Times(1,000 rounds)$
0.1 (Constant) Gridsearch Cross-Validation	$\begin{array}{c} 4.0061 \\ 12.5433 \\ 21.5929 \end{array}$

Comparison of running times

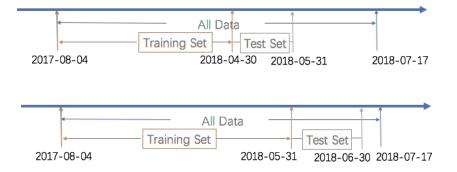

→ Choose Constant Bandwidth(0.1)

Digital Twin: Integration of the Methodologies

- Activity Simulation
- Category Simulation
- Number of Cases
- Throughput Time

→ Generates Virtual Activity Table

_CASE_KEY	ACTIVITY_EN	EVENTTIME	CATEGORY_NAME	_SORTING
201807010	Status: New	2018.7.2 3:08	Category 1	10
201807010	Status: Open	2018.7.2 3:14	Category 1	10
201807010	Change assignee	2018.7.2 3:14	Category 1	10
201807010	Status: On Hold	2018.7.2 3:49	Category 1	10
201807010	Status: Open	2018.7.2 6:00	Category 1	10
201807010	Status: Closed	2018.7.2 12:06	Category 1	10



Model Validation

• Training Data

Model	Markov Process	KDE (Bandwidth=0.1)	HoltWinter (Period = 7 days)
M1	2 months	2 months	All
M2	2 months	2 months	4 months
M3	1 month	1 month	4 months

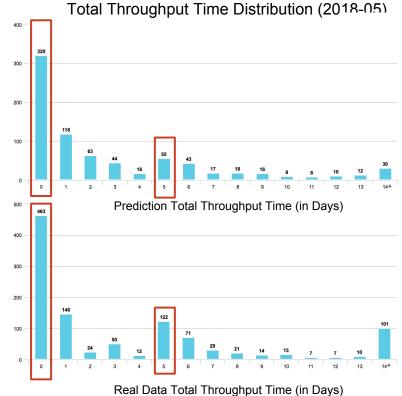
Cross Validation

Model Validation

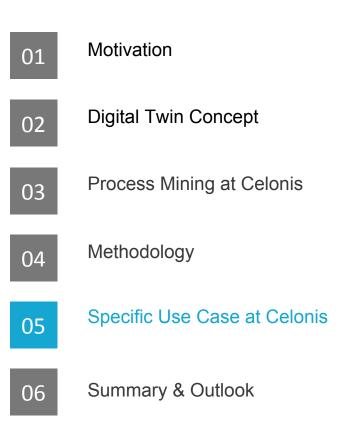
• Simulated Values Validation (Prediction for May 2018)

	Cases per day	Events per Day	Avg Total Throughput time	Trimmed Avg Total Throughput Time	Sample Size
rel. Error M1	31.25%	28.57%	15.52%	16.05%	21.45%
rel. Error M2	25.00%	32.38%	11.20%	11.11%	23.55%
rel. Error M3 🔆	18.75%	20.95%	18.10%	14.81%	25.45%

• Simulated Values Validation (Prediction for June 2018)


	Cases per day	Events per Day	Avg Total Throughput time	Trimmed Avg Total Throughput Time	Sample Size
rel. Error M1	45.16%	36.99%	43.53%	33.33%	13.40%
rel. Error M2	38.71%	30.64%	42.35%	31.82%	14.87%
rel. Error M3 🔆	36.67%	27.75%	28.24%	18.18%	14.87%

Model Validation


• Model 3

Activity Frequency Validation (2018-05)

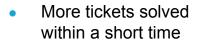
Activity	Frequency Real Data	Frequency Prediction	Rel. Error In %
Create Ticket	21.34%	21.36%	0.09
Status: New	16.46%	17.95%	9.05
Change assignee	12.20%	9.40%	22.95
Status: Open	11.59%	12.82%	10.61
Status: Closed	10.37%	9.40%	9.35
Change Category	9,76%	9.40%	3.69
Status: Solved	7.93%	6.84%	13.75
Status: On Hold	5.49%	6.84%	24.59
Change Priority	4.89%	6.84%	39.87

First Level Service Automation

...

What if I buy a chatbot and automate the first-level service?

How does this affect my throughput time? How much people could I reallocate? Reduce the throughput time of steps which belong to first level service to zero and simulate the cases.


Simulated Value for May 2018

	Cases per day	Events per Day	Avg Total Throughput time	Trimmed Avg Total Throughput Time	Sample Size
Percentage of Change	-6.25%	-4.76%	-68.10%	-78.75%	-24.09%

Automated

First Level Service Automation

Real World

- Average throughput time overall reduced
- Same Happy Paths

Tickets Created in May 2018 (Celonis Process Explorer)

01	Motivation
02	Digital Twin Concept
03	Process Mining at Celonis
04	Methodology
05	Specific Use Case at Celonis
06	Summary & Outlook

Summary and Outlook

Summary

- Process mining and Digital Twin Model
- Happyfox ITSM Data Model
- Data exploration
- Introduction of the techniques applied
- Model training and validation
- Application of Digital Twin

Future Works

- More sophisticated model
- More what-if questions
 - Number of tickets change
 - > 24/7 customer support
- More input data

*

...

Thank you!